OTKyaa 4To B3snoch B C#

UTto noBnunano Ha C#? Ha uyto nosnuan C#?

Mapk
LLleB4yeHKO
mark-progmsk@yandex-team.ru

https://markshevchenko.pro
@markshevchenko

https://prog.msk.ru

mailto:mark-progmsk@yandex-team.ru
https://markshevchenko.pro
http://t.me/markshevchenko
https://prog.msk.ru

CBoucTBa

CesonctBa — C++ n Java?

C++ Java

#include <iostream> import java.util.Arraylist;

void main () { public class Main {
std::cout.width(10); public static void main() {
std::cout << std::cout.width(); ArrayList<String> s =

} new ArraylList<String>();

/] => 10 s.add(“foo0");

s.add(“bar”);

System.out.println(s.get(9));
System.out.println(s.size());

CesonctBa — C++ n Java?

Java Java
public class Main { import java.awt.geom.Arc2D;
public static void main() {
int[] a = new int[3]; public class Main {
public static void main() {
System.out.println(a.length); Arc2D shape =
} new Arc2D.Double(Arc2D.Pie);
} shape.setAngleExtent(260);

System.out.println(
shape.getAngleExtent()

) ;

Csounctea — Delphi (Object Pascal)

7

Delphi - Projectl [+~

File Edit

Search View Compile Run Options Tools Help

350
=

)

b

= H| =

i pemt)

& ['o*

N E1E] = e

\ Standard f&dditional {Data Access {Data Controls 4Dialogs £System AVBX }-,Samples,‘

=| Object Inspector

|Form1: TForm1

e
a
+]

ActiveControl
AutoScroll True
+Borderlcons [biSystemtdenul |
BorderStyle bsSizeable
Caption Form1
ClientHeight 273
Clientwidth 427
Color clBtnFace
CH3D True
Cursor ciDefault
Enabled True
+Font [TFont)
FormStyle fsMNormal
Height 300
HelpContext 0 E

\Properties ,(Events /

Program
Manaaer

“ Y LInitT #

CeouctBa — Visual BASIC

= Microsoft Yisual Basic [design] I '[*
File Edit Code Run Window Help
| Caption [#] A/ Form 2] |'§' 1035, 1140 | i 5535 %5085

Higyoft Microsoft Yisual Basic Yersion 1.0

ﬁ Copyright © 1987-1991 Microsoft Corp.
Portions of this product were developed
for Microsoft by Cooper Software, Inc.

This product is licensed to:
User
Serial number: 00-046-3100-72146607

= About Microsoft Visual Basic ject] -

386 Enhanced Mode
Memory: 8739 KB Free
Math Co-processor: Present

Global

File Managef Program Manager

CBolicTBa — CUHTaAKCUYECKUIA caxap, HO...

interface IFieldAndProperty

{
int field;

int Property { get; set; }

CBolicTBa — CUHTaAKCUYECKUIA caxap, HO...

class Base

{
int field;
virtual void Method()
{
}
virtual void Abstract() = 0;
class DerivedA : Base } class DerivedB : Base
{ {
override void Method() override void Method()
{ {
field = field + 4; field = field * 2;
b class DerivedAB : DerivedA, DerivedB ¥
} { }
int NextField()
{
Method(); // ???
return field; // ???
Abstract(); // '!!
}

C++

Java

F#

Visual BASIC

VB.NET

TypeScript

Kotlin

Scala

Python

Delphi

JavaScript

CobbITnS

interface IFieldPropertyDelegateAndEvent
{

int field;

int Property { get; set; }

Action<object, EventArgs> action;

event Action<object, EventArgs> Event;

12

OT1nunymne codbbITUM OT AeneraTtoB?

>
>
4
>
>
8

Func<int, int> f = i => i + 2;
f(2)

f+=1=>1 * 4,
f(2)

13

[eneratbl — Kak 310 6bINO B C

#include <stdio.h>
#include <stdlib.h>

int int_compare(const int* a, const int* b) {
return *a - *b;
}

void main() {
int a[7] = { 23, 17, 34, 75, 45, 94, 21 };
gsort(a, 7, sizeof(int), int_compare);

for (size_t i =0; i < 7; i++)
printf("%d\n", a[il]);

14

[leneratbl — Kak 3170 ctano B C++

class Foo

{

private:
int value;

public:
Foo(int value) { this->value = value; }

int get_value() const { return value; }

int compare(const Foo& other) const {
return value - other.value;

}
static int compare2(const void* a, const void* b) {

¥
s

return static_cast<const Foo*>(a)->compare(*static_cast<const Foo*>(b));

15

[leneratbl — Kak 3TO cTano B Java

import java.util.Arrays;
import java.util.Comparator;

class Main {
public static void main(String[] args) {
Integer[] a = new Integer[] { 23, 17, 34, 75, 45, 94, 21 };

Arrays.sort(a, new Comparator<Integer>() {

public int compare(Integer a, Integer b) {
return a - b;
}

1)

for (int 1 = @; i < a.length; i++)
System.out.println(a[i]);

16

[leneratbl — Kak 310 cTano B C#

using System;

class Program {
static int Compare(int a, int b) {
return a - b;

}

public static void Main (string[] args) {
int[] a = new int[] { 23, 17, 34, 75, 45, 94, 21 };
Array.Sort(a, Compare);

for (int i = ©; i < a.Length; i++)
Console.WritelLine(a[i]);

17

[leneratbl cenyac

delegate int F(int value);
Ff=1=>1+2;
£(1)

f4=i=>1i%2;
(1)

NV VWV V Vv

Func<int, int> f = i => i + 2;
f(1)

f+=1=>1i * 4,
£(1)

NV VWV Vv

18

[Tonnmopdunam

19

[Tonnmopdunam

‘t Higher-Order and Symbolic Computation, 13, 11-49, 2000
® 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Fundamental Concepts in Programming Languages

CHRISTOPHER STRACHEY
Reader in Computation at Oford University, Programming Research Group, 43 Banbury Road, Oford, UK

Abstract. This paper forms the substance of a course of lectures given at the International Summer School in
Ccmpnlcr Progmming st Copenkagenin Augs, 1967 The s werorgnaly given fom e andhe

pape sill ctins many of e shorcomings S b g b uncertainty of aim-—itis
never gl wha sort o adince ther will e forsuh etures—and an assistedswiingfrom o
o 1 mods p print than it Tecture room.
i (and other) fauls, 1 apologise to the reader

he course to CPL [1-3]. Th

been under development since 1962 at Cambridge and London and Oxford. It has served as a vehicle for rescarc]
u1o ot pogramatting Mngukees s he doign f Snpien; Patal gl et o Cusbridgosse
London. lable

ing point in its evolution quite soon and to produce a compiler and reference manuals for this version. The
compiler will probably be writien in such a way that it is relaively casy to transfer it to another machine, and in
the first instance we hope to establish it on three or four machines more or less at the same time.

The lack of a precise formulation for CPL should not cause much difficulty i this course, as we are primarily
concerned with the ideas and concepts involved rather than with their precise representation in a programming
language.

Keywords: prog languages, semantics, foundations of computing, CPL, L-values, R-values, para-
mer pessog, vsable binding, functions a daa, parameric polymerpism ad hos polymorphism, bind
mechanisims, type compl

1. Preliminaries
1.1. Introduction

Any discussion on the foundations of computing runs into severe problems right at the
start, The difficulty is that although we all use words such as ‘name’, *value’, ‘program’,
“expression” or ‘command” which we think we understand, it ofien tums out on closer

gation that in point of fact we all mean different things by these words, so that com-
‘munication is at best precarious. These misunderstandings arisc in at least two ways. The
first is straightforwardly incorrect or muddled thinking. An investigation of the meanings
ofthese basic terms is undoubtedly an exercise in mathematical logic and neither to the taste
the field of competence of many people who work on programming languages.
As a result the practice and development of programming languages has outrun our ability
o fit them into a secure mathematical framework so that they have to be described in ad
hoe ways. Because these start from various points they often use conflicting and sometimes
also inconsistent interpretations of the same basic terms.

12 STRACHEY

A second and more subtle reason for misunderstandings is the existence of profound
differences in philosophical outlook between mathematicians. This is not the place to
discuss this issue at length, nor am I the right person to do it. T have found, however, that
these differences affect both the motivation and the methodology of any investigation like
this to such an extent as to make it virtually incomprehensible without some preliminary
warning. In the rest of the section, therefore, T shall try to outline my position and describe
the way in which I think the mathematical problems of programming languages should be
tackled. Readers who are not interested can safely skip to Section 2

1.2, Philosophical considerations

The important philosophical difference is between those mathematicians who will not allow
the existence of an object until they have a construction rule for it, and those who admit the
existence of a wider range of objects including some for which there are no construction
rules. (The precise definition of these terms is of no importance here as the difference is
really one of psychological approach and survives any minor tinkering.) This may not seem
tobe a very large difference, but it does lead to a completely different outlook and approach
to the methods of attacking the problems of programming languages.

The advantages of rigour lie, not surprisingly, almost wholly with those who require
construction rules. Owing to the care they take not to introduce undefined terms, the
better examples of the work of this school are models of exact mathematical reasoning.
Unfortunately, but also not surprisingly, their emphasis on construction rules leads them to
an intense concern for the way in which things are written—i.c., for their representation,
generally as strings of symbols on paper—and this in turn scems to lead to a preoccupation
with the problems of syntax. By now the connection with programming languages as we
know them has become tenuous, and it generally becomes more so as they get decper into
syntactical questions. Faced with the situation as it exists today, where there is a generally
known method of describing a certain class of grammars (known as BNF or context-free),
the first instinct of these mathematicians seems to be to investigate the limits of BNF—what
can you express in BNF even at the cost of very cumbersome and artificial constructions?
This may be a question of some mathematical interest (whatever that means), but it has
very little relevance to programming languages where it is more important to discover
better methods of describing the syntax than BNF (which is already both inconvenient and
inadequate for ALGOL) than it is to examine the possible limits of what we already know to
be an unsatisfactory technique.

This i probably an unfair eriticism, for, as will become clear later, I am not only tem-
peramentally a Platonist and prone to talking about abstracts if I think they throw light ona
discussion, but I also regard syntactical problems as essentially irrelevant to programming
languages at their present stage of development. In a rough and ready sort of way it seems
to me fair to think of the semantics as being what we want to say and the syntax as how
we have to say it. In these terms the urgent task in programming languages is to explore
the field of semantic possibilities. When we have discovered the main outlines and the
principal peaks we can set about devising a suitably neat and satisfactory notation for them,
and this is the moment for syntactic questions.

20

Ad hoc nonnmopdusm

decimal Sum(this IEnumerable<decimal> source) {..}
double Sum(this IEnumerable<double> source) {..}

int Sum(this IEnumerable<int> source) {..}

long Sum(this IEnumerable<long> source) {..}
decimal? Sum(this IEnumerable<decimal?> source) {..}
double? Sum(this IEnumerable<double?> source) {..}
int? Sum(this IEnumerable<int?> source) {..}

long? Sum(this IEnumerable<long?> source) {..}

21

Generic Math B C# 11

public static TResult Sum<T, TResult>(IEnumerable<T> values)
where T : INumber<T>
where TResult : INumber<TResult>
TResult result = TResult.Zero;

foreach (var value in values)

{
}

result += TResult.Create(value);

return result;

22

[TapameTpuyeckuimn nonumopdpusm B C++

#include <jiostream>

template <int N> struct Factorial

{
enum { value = N * Factorial<N - 1>::value };
}i
template <> struct Factorial<@>
{
enum { value = 1 };
}i

void main()

{

std::cout << 4 << "1" << " = " << Factorial<4>::value << "\n";
std::cout << 8 << "1" << " = " << Factorial<8>::value << "\n";
std::cout << 16 << "I" << " = " << Factorial<16>::value << "\n";

}

[TapameTpunyeckmnn nonmmopdpusm B Java

class DoublePoint { public double x; public double y; }

String json =

{
"foo": { "x": 1.0, "y": 2 },
"bar": { "x": 3, "y": 4.0 },
"baz": { "x": 5, "y": 6}

}

nmon o,
)

Map<String, DoublePoint> m = new Gson().fromJson(json, Map.class);

for (Map.Entry<String, DoublePoint> p: m.entrySet()) {
System.out.println(p.getKey());
System.out.println(p.getValue().x);
System.out.println(p.getValue().y);

b

A~ A~

24

[TapameTpuyeckuimn nonumopdpunsm B C#

public class Node<T>

{

}

public T Value { get; set; }

public Node<T> Next { get; set; }

public class List<T>

{
}

public Node<T> Head { get; set; }

public bool Contains(T value)

{

var current = this.Head;

while (current != null)

{
if (current.value == value)
return true;

current = current.next;

}

return false;

25

BbiBO4 TMNOB

type Node<'a> = {
value: 'a
next: Node<'a> option

}

type List<'a> = {
head: Node<'a> option
b

let contains value list

let rec check node =
match node with
| None -> false
| Some node ->
if node.value =
then true
else check node.

check list.head

value

next

26

BbiBOO, TUMOB

27

C++

Java

F#

Visual BASIC

VB.NET

TypeScript

Delphi

I
7

Kotlin

Scala

Python

JavaScript

LINQ

DateTime[] dateTimes = ..;

// TloHegenbHUKMU B XPOHOJIOrMYECKOM nopsigke
var result = dateTimes.Where(x => x.DayOfWeek == DayOfWeek.Monday)

.0rderBy(x => x);

[Touemy namoga-pyHKUNN?

22 + 4% = R?

30

[Touemy namoga-pyHKUNN?

22 + 4% = R?

fz,y) = Va2 + 4
f(3,4) =5

31

[Touemy namoga-pyHKUNN?

\/332 T y2(37 4)

32

[Touemy namoga-pyHKUNN?

\/$2 T y2(37 4)

Ty @2 +y?

33

[Touemy namoga-pyHKUNN?

Va? +12(3,4)
zy\/ @2 + 3

Aeyy/ a2 + y?

34

[Touemy namoga-pyHKUNN?

Azy/ z2 + 12

35

[Touemy namoga-pyHKUNN?

Azy/ z2 + 12

(lambda (x y) (sqrt (+ (* x x) (* y y))))

36

[Touemy namoga-pyHKUNN?

Azy/ z2 + 12

(lambda (x y) (sqrt (+ (* x x) (* y y))))

(x, y) => Math.Sgrt(x * x +y * vy)

37

C++

Java

F#

Visual BASIC

VB.NET ‘

TypeScript ‘

Delphi

4 Kotlin ‘

Scala

Python

JavaScript

[lepeBbs BbipaXXeHUn

39

LintuposaHue B LISP

>(+ (/1 1) (/11) (/12) (/16) (/124) (/1120) (/ 1 720) (/ 1 5040))
2.7182539682539684

> "(+ (/ (/ (/12) (/16) (/124
(+ (/1 1 1 (/ 1 (/ 1 (

(/ 1128) (/ 1 720) (/ 1 5048))
24) 1

1 1) 1 1) 1 2) 16))
1) (/11) (/12) (/16) (/ / 1120) (/ 1 7208) (/ 1 5040))

40

Makpoceil

(define (display-value value)
(display value)
(display " = ")
(display (eval value))
(newline))

(define a 15)
(define x 3)

(display-value ‘(* a x))
(* a x) = 45

41

LintupoBaHue B F#
> let f = <@ fun x -> x + 2 @>

val f: Quotations.Expr<(int -> int)>
Lambda (x, Call (None, op_Addition,

[x, Value (2)]))

42

[lepeBbs BbipaXXeHnU

\"

Func<double, double> square = x => x * Xx;
> square(2)
4

> Expression<Func<double, double>> expSquare = x => x * x;
> expSquare(2)
error CS1955: HeBbi3biBaeMbit 4YneH "expSquare” He MOXeT WMCNONb30BaTbCS KakK MeTon.

> expSquare.Compile()(2)
4

43

[1ponsBoaHas

\%

#r "SySharp.dll”

using SySharp;

Symbolic.Derivative(x => x + 3).ToString()
"x => (1 + 0)"

vV V

> Symbolic.Derivative(x => x + 3).Simplify().ToString()
IIX => 1 n

> var a = 15;
> Symbolic.Derivative(x => a * x * (x + 3)).Simplify().ToString()
"x => (a * x) + (a* (x +3))"

44

C++

Java

Visual BASIC

VB.NET

TypeScript

Kotlin

Scala

Python

Delphi

JavaScript

JleHnBbIE BblYUNCNEHNS

46

Haskell
fibs =

0

1

. zipWith (+) fibs (tail fibs)

47

N ol

0112315813...
011235813...

48

JleHuBble BblYUCIEHNA — LENble Yncna

static IEnumerable<BigInteger> Integers()

{

var 1 = BigInteger.One;

while (true)
yield return i++;

}

// Integers(): 1, 2, 3, 4, 5, 6, 7, 8, 9, 160,..

49

JleHuBble BblYUCIEHNA — NPOCTbIE YNCTIa

static IEnumerable<BigInteger> Primes()

{
}

return Integers().Where(IsPrime);

// Primes(): 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,..

50

2345678910111213141516...

2P 345673911213+ 15...
23@ 5791113+ 17192423 25. ..

235 @ 711 131719232529 31 ...

51

IleHnBble BblYNCNEHNA — OpYyrMe NpocTble Ynucna

static IEnumerable<BigInteger> Primes()

{
}

return Integers().Skip(1).PrimesRecursive();

static IEnumerable<BigInteger> PrimesRecursive(this IEnumerable<BigInteger> s)
{

var (nextPrime, tailPrimes) = s.HeadTail();

yield return nextPrime;

var filteredTail = tailPrimes.Where(i => i % nextPrime != BigInteger.Zero)
.PrimesRecursive();

foreach (var prime in filteredTail)
yield return prime;

}

// Primes(): 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,..

52

static IEnumerable<BigInteger> Fibs()

{
yield return BigInteger.Zero;
yield return BigInteger.One;

foreach (var s in Fibs().Zip(Fibs().Skip(1),
yield return s;

}

// Fibs(): o, 1, 1, 2, 3, 5, 8, 13, 21, 34,.

(a, b) => a + b))

53

JleHnBble BblYUCIIEHNA — MPAaKTUYECKUN Npumep

public static IEnumerable<RegistryKey> GetAllKeys(RegistryKey root)

{

yield return root;

foreach (var subKeyName in root.GetSubKeyNames())
{
using (var subKey = root.OpenSubKey(subKeyName))
{
foreach (var descendantKey in GetAllKeys(subKey))
yield return descendantKey;

54

C++

Java

F#

VB.NET ‘

TypeScript ‘

‘ LISP
Haskell

Visual BASIC

Delphi

I
7

Kotlin ‘

Scala

Python

JavaScript

ACUHXPOHHOCTb

56

Callback Hell

static void AsyncProcessRequest(IAsyncResult asyncResult)

var listener = (HttpListener)asyncResult.AsyncState;
listener!.BeginGetContext(AsyncProcessRequest, listener);
var context = listener.EndGetContext(asyncResult);

if (context.Request.HttpMethod == "GET")
if (context.Request.RawUrl == "/")
{

context.Response.StatusCode = 208;
var buffer = Encoding.UTF8.GetBytes("<!DOCTYPE html>\n");
context.Response.OutputStream.BeginWrite(buffer, 8, buffer.Length, result =>

var response = (HttpListenerResponse)asyncResult.AsyncState;
buffer = Encoding.UTF8.GetBytes("<html lang='en'>\n");
response!.OutputStream.BeginWrite(buffer, @, buffer.Length, result =>

response = (HttpListenerResponse)asyncResult.AsyncState;

buffer = Encoding.UTF8.GetBytes("<head><meta charset="utf-8'><title>Example HTTP server</title></head>\n");
response! .OutputStream.BeginWrite(buffer, 8, buffer.Length, result =>

{

response = (HttpListenerResponse)asyncResult.AsyncState;
buffer = Encoding.UTF8.GetBytes("<body><p>Example HTTP server</p></body>\n");
response! .OutputStream.BeginWrite(buffer, 8, buffer.Length, result =>

response = (HttpListenerResponse)asyncResult.AsyncState;
buffer = Encoding.UTF8.GetBytes("</html>");
response! .OutputStream.BeginWrite(buffer, 8, buffer.Length, result =>

response = (HttpListenerResponse)asyncResult.AsyncState;
response! .OutputStream.Close();
}, response);
}, response);
}, response);
}, response);
}, context.Response);

}
else
{
context.Response.StatusCode = 404;
context.Response.OutputStream.Close();
}
}
else
{
context.Response.StatusCode = 405;
context.Response.OutputStream.Close();
}

57

async/await

private

awai
var

GetC
awai

if (
{

}

else

{

static async void GetContextAsync(HttpListener listener)

t Task.Yield();
context = await listener.GetContextAsync();

ontextAsync(listener);

t Console.Out.WriteLineAsync($"{context.Request.HttpMethod} {context.Request.RawUrl}");
context.Request.HttpMethod == "GET")

if (context.Request.RawUrl == "/")

await Task.Delay(100);
context.Response.StatusCode = 208;

await using var writer = new StreamWriter(context.Response.OutputStream);
await writer.WriteLineAsync("<!DOCTYPE html>");

await writer.WriteLineAsync("<html lang='en' xmlns='http://www.w3.0rg/1999/xhtml'>");
await writer.WriteLineAsync(" <head>");

await writer.WriteLineAsync(" <meta charset='utf-8' />");

await writer.WriteLineAsync(" <title>Example HTTP server</title>");
await writer.WriteLineAsync(" </head>");

await writer.WriteLineAsync(" <body>");

await writer.WriteLineAsync(" <p>Example HTTP server</p>");

await writer.WriteLineAsync(" </body>");

await writer.WriteLineAsync("</html>");

}
else
{
context.Response.StatusCode = 404;
context.Response.OutputStream.Close();
}

context.Response.StatusCode = 405;
context.Response.OutputStream.Close();

58

Bbino/ctano

static void AsyncProcessRequest(IAsyncResult asyncResult) private static async void GetContextAsync(HttpListener listener)
var listener = (HttpListener)asyncResult.AsyncState; await Task.Yield();
listener!.BeginGetContext(AsyncProcessRequest, listener); var context = await listener.GetContextAsync();
var context = listener.EndGetContext(asyncResult); GetContextAsync(listener);
await Console.Out.WriteLineAsync($"{context.Request.HttpMethod} {context.Request.RawUrl}");
if (context.Request.HttpMethod == "GET")
if (context.Request.HttpMethod == "GET")
if (context.Request.RawUrl == "/")
{ if (context.Request.RawUrl == "/")
context.Response.StatusCode = 208; {
var buffer = Encoding.UTF8.GetBytes("<!DOCTYPE html>\n"); await Task.Delay(100);
context.Response.OutputStream.BeginWrite(buffer, 8, buffer.Length, result => context.Response.StatusCode = 200;
var response = (HttpListenerResponse)asyncResult.AsyncState; await using var writer = new StreamWriter(context.Response.OutputStream);
buffer = Encoding.UTF8.GetBytes("<html lang='en'>\n"); await writer.WriteLineAsync("<!DOCTYPE html>");
response!.OutputStream.BeginWrite(buffer, @, buffer.Length, result => await writer.WriteLineAsync("<html lang='en' xmlns='http://www.w3.0rg/1999/xhtml'>");
await writer.WriteLineAsync(" <head>");
response = (HttpListenerResponse)asyncResult.AsyncState; await writer.WriteLineAsync(" <meta charset='utf-8' />");
buffer = Encoding.UTF8.GetBytes("<head><meta charset="utf-8'><title>Example HTTP server</title></head>\ndygit writer.WriteLineAsync(" <title>Example HTTP server</title>");
response! .OutputStream.BeginWrite(buffer, 8, buffer.Length, result => await writer.WriteLineAsync(" </head>");
await writer.WriteLineAsync(" <body>");
response = (HttpListenerResponse)asyncResult.AsyncState; await writer.WriteLineAsync(" <p>Example HTTP server</p>");
buffer = Encoding.UTF8.GetBytes("<body><p>Example HTTP server</p></body>\n"); await writer.WriteLineAsync(" </body>");
response! .OutputStream.BeginWrite(buffer, 8, buffer.Length, result => await writer.WriteLineAsync("</html>");
response = (HttpListenerResponse)asyncResult.AsyncState; else
buffer = Encoding.UTF8.GetBytes("</html>"); {
response! .OutputStream.BeginWrite(buffer, 8, buffer.Length, result => context.Response.StatusCode = 404;
context.Response.OutputStream.Close();
response = (HttpListenerResponse)asyncResult.AsyncState; }
response! .OutputStream.Close(); }
}, response); else
}, response); {
}, response); context.Response.StatusCode = 405;
}, response); context.Response.OutputStream.Close();
}, context.Response); }
} }
else
{

context.Response.StatusCode = 404;
context.Response.OutputStream.Close();

}
}
else
{
context.Response.StatusCode = 405;
context.Response.OutputStream.Close();
}

A poor man’s concurrency monad

J. Functional Programming 9 (3): 313-323, May 1999, Printed in the United Kingdom 313
© 1999 Cambridge University Press

FUNCTIONAL PEARL
A poor man’s concurrency monad

KOEN CLAESSEN
Chalmers Unicersity of Technology
(e=mail: koenGcs. chalmers. se)

Abstract

Without adding any primitives to the language, we define a concurrency monad transformer
in Haskell. This allows us to add a limited form of concurrency to any existing monad.
The atomic actions of the new monad are lifted actions of the underlying monad. Some
extra operations. such as fork. to initiate new processes, are provided. We discuss the
implementation, and use some examples to illustrate the usefulness of this construction.

1 Introduction

The concept of a monad (Wadler, 1995) is nowadays heavily used in modern func-
tional programming languages. Monads are used to model some form of compu-
tation, such as non-determinism or a stateful calculation. Not only does this solve
many of the traditional problems in functional programming, such as 1/O and mu-
table state, but it also offers a general framework that abstracts over many kinds of
computation.

It is known how to use monads to model concurrency. To do this, one usually
constructs an imperative monad, with operations that resemble the Unix fork
(Jones and Hudak, 1993). For reasons of efficiency and control, Concurrent Haskell
(Peyton Jones e al. 1996) even provides primitive operations, which are defined
outside the language.

This paper presents a way to model concurrency, generalising over arbitrary
monads. The idea is to have atomic actions in some monad that can be lified into a
concurrent setting. We explore this idea within the language; we will not add any
primitives.

2 Monads

To express the properties of monads in Haskell, we will use the following type cla
definition. The bind operator of the monad is denoted by (*), and the unit operator
by return

ridge.org/core. 1P address: 109,252,

208, 0n 03 Mar 2022 a1 05:23.0, subject tothe Cambridge Core terms of use, avalable at
. htpsidol. 99003342

314 K. Claessen

class Monad m where
*) mu—(@—mp)omp
return : z—ma

Furthermore, throughout this paper we will use the so-called do-notation as syn-
tactic sugar for monadic expressions. The following example illustrates a traditional
monadic expression on the left, and the same, written in do-notation, on the right.

expry * ix. do x « expr,
expry * i ; exprs

expry * iy 5y« expry
Teturn expry : return exprs

As an example, we present a monad with output, called the writer monad. This
monad has an extra operator called write. It takes a string as argument, which
becomes output in a side effect of the monad. The bind operator (*) of the monad
has to take care of combining the output of two computations,

A monad having this operator is an instance of the following class

class Monad m = Writer m where
write :: String — m()

A typical implementation of such a monad is a pair containing the result of the
computation, together with the output produced during that computation.

type W o = (3, String)

instance Monad W where
(a,5)*k = let (b, 5) = kain (b, s+ 5)
return x = (x,

instance Writer W where
write s = (), s)

Note how the bind operator concatenates the output of the two subactions,

Most monads come equipped with a run function. This function executes a
computation, taking the values inside one level downwards. The monad W has such
a run function, we call it output, which returns the output of a computation in W.

output i W String

output (a,) = s
Downlaaded rom hips. ridge rgcor. I addres: 109.252.82208 0 03 Mar 2022t 05:2305,subject o the Cambridge Cor terms of use, aolabie at
bt Cambridge rgcoreNerm. ntps. o1 0rg 10101 S0956796859003342

60

Atom
I
Fork
Atom Atom
I }
Fork Atom
r____‘_____/hs_____l_____1
Atom Atom Atom
bt EELELEEEE [T Rk
' !
Stop Atom

v
Stop

Can we achieve the same goal without writing compiler extensions? One solution, developed in the functional
programming community and supported in Haskell, is to use monads [18, 27). The Haskell libraries provide a Monad
interface that allows generic programming with functional combinators. The solution we adopt here is to design the
thread control primitives (such as £oxk) as monadic combi and use them as a d pecific language directly
embedded in the program. Such primitives hide the “internal plumbing” of CPS in their implementation and gives an
abstraction for multithreaded programming.

In principle, this monad-based approach can be used in any language that supports the functional programming
style. However, programming in the monadic style is often not easy, because it requires frequent use of binding
operators and anonymous functions, making the program look quite verbose. Haskell has two features that significantly
simplify this programming style:

Mt thraaded code Trace Scheduler code
JA——— \ cheduter = do (

a0k < sock_accept s

2ys_tfork (sesion sock) " trace <- fotch_thresd;

Zerver. doop: exacte trace;

e g s5_rorx

session sock = do { 3 el

n<-sys_nbio (writenb ... > i ? = =

5Y5_NBI0 (write_nb) case trace of

i epe i s s smsn -

[Frent. abatraction
/f

e (3

n<-ays_nbio (vrite_nb -

=

Figure 3: Thread exccution through lazy evaluation (the steps are described in the text)

o Operator Overloading: Using type classes, the standard monad operators can be made generic, because the
overloading of such operators can be resolved by static typing

o Syntactic Sugar: Haskell has a special do-syntax for programming with monads. Using this syntax, the pro-
grammer can write monadic code in a C-like imperative programming style, and the compiler automatically
translates this syntax to generic monadic operators and anonymous functions.

In 1999, Koen Claessen showed that can be using a monad [8]. His design
extends to an clegant, application-level implementation technique for the hybrid model, where the monad interface
provides the thread abstraction and a lazy data structure provides the event abstraction. This section revisits this
design, and the next section shows how to use this technique to multiplex IO in network server applications.

3.1 Traces and system calls

In this paper, we use the phrase “system calls™ to refer to the following thread operations at run time:
 Thread control primitives, such as fork and yield.
 1/O operations and other effectful To computations in Haskell.

A central concept of Clacssen’s implementation is the frace, a structure describing the sequence of system calls
made by a thread. A trace may have branches because the corresponding thread can use £ork to spawn new threads.
For example, exceuting the (recursive) sexver function shown on the left in Figure 4 generates the infinite trace of
system calls on the right.

A run-time representation of a trace can be defined as a tree using algebraic data types in Haskell. The definition of
the trace is essentially a list of system calls, as shown in Figure 5. Each system call in the multithreaded programming

Combining Events And Threads For Scalable Network

sexver = do { svs_cann 1

5YS_FORK.

S¥s cALL 2 S¥s CALL 1

client « do { s¥s_roRk
ays_call 2;
svs.chiz svs cam 1

Figure 4: Some threaded code (left) and its trace (right)

interface corresponds to exactly one type of tree node. For example, the SYS FORK node has two sub-traces, one
for the continuation of the parent thread and one for the continuation of the child. Note that Haskell’s type system
distinguishes code that may perform side effects as shown in the type of a SYS NBIO node, which contains an 10
computation that returns a trace.

— s used in the ; e
_nbio c — Perform a nonblocking 10 function ¢

sys_tork ¢ Create a new thread running funciion ¢
sys yiela — Switch to another thread

Terminate the current thread
sys_epoll_wait £4 event — Blockandvwail for an cpoll cvent on a

% — file descriptor

data Trace - ‘Haskell data ype for races

svs_ReT
SYS_EPOLL WAIT FD EPOLL EVENT Trace

Figure 5: System calls and their corresponding traces
Lazy evaluation of traces and thread control: We can think of a trace as the output of a thread execution: as
the thread runs and makes system calls, the nodes in the trace are generated. What makes the trace interesting is that
computation is /azy in Haskell: a computation is not performed until its result is used. Using lazy evaluation, the
consumer of a trace can control the exccution of its producer, which is the thread: whenever a node in the trace is
examined (or, forced to be evaluated), the thread runs to the system call that generate the corresponding node, and the
execution of that thread is suspended until the next node in the trace is examined. In other words, the execution of
threads can be controlled by traversing their traces.

Figure 3 shows how traces are used to control the thread execution. It shows a run-time snapshot of the system:
the scheduler decides to resume the execution of a thread, which is blocked on a system call sys epoll wait in the
sock_send function. The following happens in a sequence:

1. The scheduler forces the current node in the trace to be evaluated, by using the case expression to examine its
value.

Becaus

of lazy evaluation, the current node of the trace is not known yet, so the con
called in order to compute the value of the node.

nuation of the thread is

The thread continuation runs to the point where the next system call sys nbio is performed.

s

The new node in the trace is generated, pointing to the new continuation of the thread.

62

Introducing F# Asynchronous Workflows

let AsyncHttp(url:string) = async {
let req = WebRequest.Create(url)

let! rsp = req.GetResponseAsync()

use stream
use reader

rsp.GetResponseStream()
new System.IO.StreamReader(stream)

return reader.ReadToEnd()

63

C++

Java

LISP

VB.NET ‘

Visual BASIC

Delphi

Rust ‘
TypeScript
— Kotlin
Scala
Python ‘

JavaScript ‘

Jlutepatypa

e Xaposnb0 AbernbcoH u [xepanb0 CaccmaH. CTpyKTypa N UHTEpnpeTauns
KOMMNbIOTEPHbIX NMPporpamm

AnaH Kynep. lNcnxbonbHuLUa B pykax nayueHToB

Christopher Strachey. Fundamental Concepts in Programming Languages
Koen Claessen. A Poor Man’s Concurrency Monad

Peng Li, Stephan A. Zdancewic. Combining Events And Threads For Scalable

Network Services
Tomas Petricek. Asynchronous C# and F#
e SySharp: https://github.com/markshevchenko/sysharp

65

https://classes.cs.uoregon.edu/14S/cis607pl/Papers/fundamental-1967.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/A369E310ADAE4455020C918FC1D47958/S0956796899003342a.pdf/a-poor-mans-concurrency-monad.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1391&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1391&context=cis_papers
http://tomasp.net/blog/csharp-fsharp-async-intro.aspx/
https://github.com/markshevchenko/sysharp

Npoet Habop B LLkony 6akeHa-pa3paboTku!

[MogaTb 3a8BKy UM BbINOSTHUTL BCTYNUTENbHOE 3aaHne HY>XHO A0 23 noHA 23.59 no
MOCKOBCKOMY BpeMeHMU

e (O6y4yeHue B WIKONe NpPoxXoauT Ha AByXx Tpekax: Python n Java

e CTyaOeHTOB LUKOMbI XOYT ABa 3Tana: OHManH C NeKUMAMU N NPaKTUYECKUMU 3aHATUAMU U
OYHbIY B MOCKBe C peanuaaumen NpoeKkToB B KOMaHAax (AHAekc onnatut bunetbl u

NPOXWBaHWE CTyAeHTaM U3 OpYrnx ropoaos)
[=]3

[=]

e OOy4yeHne NONHOCTbLIO GecnnaTHoe

3akn4yeHune

Mapk LLieB4yeHkoO
mark-progmsk@yandex-team.ru

https://markshevchenko.pro
@markshevchenko

CsoncTBa.

CoObITns U penerarbl.
[Monmmopdunam.

BbiBOO TMMNOB.
J1am6abl.

[epeBbs BblpaXXeHUH.
JleHnBblE BbIYUCTIEHUA.
Onepatop GOTO.
ACWHXPOHHbIN KOA,.

67

mailto:mark-progmsk@yandex-team.ru
https://markshevchenko.pro
http://t.me/markshevchenko

